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Abstract

Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has
found application in many different domains. The CP model is typically fit using a least squares
objective function, which is a maximum likelihood estimate under the assumption of i.i.d. Gaus-
sian noise. We demonstrate that this loss function can actually be highly sensitive to non-
Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can
accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an al-
ternating majorization-minimization algorithm for fitting a CP model using our proposed loss
function.

1 Introduction

The CANDECOMP/PARAFAC (CP) tensor factorization can be considered a higher-order generalization of the ma-
trix singular value decomposition [4, 7] and has many applications. The canonical fit function for the CP tensor
factorization is based on the Frobenius norm, meaning that it is a maximum likelihood estimate (MLE) under the
assumption of additive i.i.d. Gaussian perturbations. It turns out, however, that this loss function can be very sensi-
tive to violations in the Gaussian assumption. However, many other types of noise are relevant for CP models. For
example, in fMRI neuroimaging studies, movement by the subject can lead to sparse high-intensity changes that are
easily confused with brain activity [6]. Likewise, in foreground/background separation problems in video surveil-
lance, a subject walking across the field of view represents another instance of a sparse high intensity change [13].
In both examples, there is a relatively large perturbation in magnitude that affects only a relatively small fraction of
data points; we call this artifact noise. These scenarios are particularly challenging because the perturbed values are
on the same scale as normal values (i.e., true brain activity signals and background pixel intensities). Consequently,
there is a need to explore factorization methods that are robust against violations in the Gaussian assumption. In
this paper, we consider a loss based on the 1-norm which is known to be robust or insensitive to gross non-Gaussian
perturbations [8].

Vorobyov et al. previously described two ways of solving the least 1-norm CP factorization problem based on a linear
programming and weighted median filtering [14]. Our method differs in that we use a majorization-minimization
(MM) strategy [9]. Like [14] our method performs block minimization. An advantage of our approach is that each
block minimization can be split up into many small and independent optimization problems which may scale more
favorably with a tensor’s size.

Throughout, we use the following definitions and conventions. All vectors are column vectors. The transpose of the
ith row of a matrix A is denoted by ai. The order of a tensor is the number of dimensions, also known as ways or
modes. Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing every index
but one. A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. The mode-nmatricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n fibers to be the columns of the resulting matrix.
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The rest of this paper is organized as follows. The robust iterative algorithm is derived in Section 2. In Section 3
we compare CPAL1 and the standard CP factorizations by alternating least squares (CPALS) in the presence of
non-Gaussian perturbations on simulated data. Concluding remarks are given in Section 4.

2 Majorization-minimization for tensor factorization

MM algorithms have been applied to factorization problems previously [12, 3, 5]. The idea is to convert a hard
optimization problem (e.g., non-convex, non-differentiable) into a series of simpler ones (e.g., smooth convex),
which are easier to minimize than the original. To do so, we use majorization functions, i.e., h majorizes g at
x ∈ Rn if h(u) ≥ g(u) for all u ∈ Rn and h(x) = g(x).

Given a procedure for constructing a majorization, we can define the MM algorithm to find a minimizer of a function
g as follows. Let x(k) denotes the kth iterate. (1) Find a majorization h(·|x(k)) of g at x(k). (2) Set x(k+1) =

argminx h(x|x(k)). (3) Repeat until convergence. This algorithm always takes non-increasing steps with respect
to g. Moreover, sufficient conditions for the MM algorithm to converge to a stationary point are well known [11].
Specifically, the MM iterates will converge to a stationary point of g if g is continuously differentiable, coercive in
the sense that all its level sets must be compact, and all its stationary points are isolated; and the function h(x|y) is
jointly twice continuously differentiable in (x,y) and is strictly convex in x with y fixed.

2.1 Solving the `1 regression problem by an MM algorithm

We now derive an appropriate majorization function for approximate `1 regression; this is subsequently used for our
robust tensor factorization. Given a vector y ∈ RI and a matrix M ∈ RI×J , we search for a vector u ∈ RJ that
minimizes the loss L(u) =

∑
i|ri(u)| where ri(u) = yi −mT

i u. Note that L(u) is not smooth and may not be
strictly convex if M is not full rank. Therefore, we instead consider the following smoothed and regularized version
to L(u):

Lε,µ(u) =

I∑
i=1

√
ri(u)2 + ε+

µ

2
‖u‖2, (1)

where ε and µ are small positive numbers. In this case, Lε,µ(u) at ũ ∈ RJ is majorized by

hε,µ(u|ũ) =
I∑
i=1

{√
ri(ũ)2 + ε+

ri(u)
2 − ri(ũ)2

2
√
ri(ũ)2 + ε

}
+
µ

2
‖u‖2. (2)

Both the loss Lε,µ and its majorization hε,µ meet the sufficient conditions that guarantee convergence of the MM
algorithm to a stationary point of Lε,µ. Since Lε,µ is strictly convex and coercive, it has exactly one stationary point.
Thus, the MM algorithm converges to the global minimum of Lε,µ. After some simplification, the iterate mapping
can be expressed as

u(m+1) = argmin
u

{
I∑
i=1

ri(u)
2√

ri(u(m))2 + ε
+
µ

2
‖u‖2

}
. (3)

Let W(m) ∈ RI×I be the diagonal matrix with (W(m))ii = (ri(u
(m))2 + ε)−1/2. Then the minimization problem

(3) is a regularized weighted least squares problem with a unique solution, i.e.,

u(m+1) = argmin
u

{
(y −Mu)TW(m)(y −Mu) +

µ

2
‖u‖2

}
= (MTW(m)M+ µI)−1MTW(m)y. (4)

2.2 Tensor factorization using `1 regression

We now derive CPAL1 for a 3-way tensor X of size I1 × I2 × I3 (it is straightforward to generalize the algorithm
to tensors of arbitrary size). To perform a rank-R factorization we minimize Lε,µ(A,B,C) which is the regular-
ized approximate 1-norm of the difference between X and its rank-R approximation, where A ∈ RI1×R,B ∈
RI2×R,C ∈ RI3×R:

Lε,µ(A,B,C) =
∑

i1,i2,i3

√√√√(xi1i2i3 − R∑
r=1

ai1rbi2rci3r

)2

+ ε+
µ

2

(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
.

In a round-robin fashion, we repeatedly update one factor matrix while holding the other two fixed. Note that the
mode-1 matricization of the rank-R approximation is A(C � B)T where � denotes the Khatri-Rao product [10].
Then the subproblem of updating A for a fixed B and C is

min
A

I1∑
i=1

I2I3∑
j=1

√((
X(1) −A(C�B)T

)
ij

)2
+ ε+

µ

2
‖A‖2F . (5)
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(a) The FMS distribution under different combinations of η and γ.
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(b) A comparison of a single recovered factor column for a replicate when η = 0.2 and γ = 2. Here
the FMS was 0.91 and 0.64 for CPAL1 and CPALS respectively. Factor columns were normalized for
comparison.

Figure 1: Panel 1a shows on average that CPALS factorizations are sensitive to artifact noise. Panel 1b provides a
close up comparison of the differences between the two methods for single recovered column in an instance where
CPALS is less accurate.

This minimization problem is separable in the rows of A, and the optimization problem for a given row is an `1
regression problem. Thus, we can apply the update rule (4) with y equal to the ith row of X(1) and M = C �B.
The other two subproblems are solved analogously.

3 Simulation Experiment

We compare the results of CPAL1 with CPALS implemented in the Tensor Toolbox [2] in the presence of Gaussian
and artifact noise. We created 3-way tensors, X′ ∈ R50×50×50 of rank-5 as follows. We first generated random
factor matrices A,B,C ∈ R50×5 where the matrix elements were the absolute values of i.i.d. draws from a standard
Gaussian. The ijkth entry of the noise free tensor X was then set to be

∑R
r=1 ai1rbi2rci3r . Then to each X we

added dense Gaussian noise and artifact outliers. All random variables we describe were independently drawn. We
generated an artifact tensor P as follows. A fraction η of the tensor entries was selected randomly. We then assigned
to each of the selected entries a value drawn from a Gamma distribution with shape parameter 50 and scale parameter
1/50. All other entries were set to 0. For the dense Gaussian noise tensor Q, the entries qijk were i.i.d. draws from
a standard Gaussian. The tensor X′ was obtained by adding the noise and artifact tensors to X :

X
′ = X+ γ

‖X‖F
‖P‖F

P+ 0.1
‖X‖F
‖Q‖F

Q

for η = 0.1, 0.2 and γ = 0.5, 1.0, 1.5 and 2.0. For all combinations of η and γ the scaled values of qijk were less
than the largest value of X.

For every pair (η, γ) we performed 100 rank-5 factorizations under the two methods. For CPAL1 computations we
set ε = 10−10 and µ = 10−8. Initial points for all tests were generated using the n-mode singular vectors of the
tensor (i.e., the nvecs command in the Tensor Toolbox). To assess the goodness of a computed factorization we
calculated the factor match score (FMS) between the estimated and true factors [1]. The FMS ranges between 0 and
1; an FMS of 1 corresponds to a perfect recovery of the original factors.
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Figure 1a shows boxplots of the FMS under both methods. The scores for CPALS decreased as the contribution of
non-Gaussian noise increased. In contrast regardless of the noise distributions applied CPAL1 tended to recover the
true factorization with the exception of occasionally finding local minima,

Figure 1b compares one column of one recovered factor matrix when η = 0.2 and γ = 2 for the two methods. In
this instance the CPALS factorization has some trouble recovering the true factor column. In this example the FMS
was 0.91 and 0.64 for CPAL1 and CPALS respectively. The median CPALS FMS was about 0.7, so the example
shown is somewhat typical. The factorization is not terrible qualitatively, but the errors in the Factor 2 estimates do
fail to capture details that CPAL1 solution does.

4 Conclusion

We derived a robust tensor factorization algorithm based on an approximate 1-norm loss. In comparisons with
methods using an LP solver we found that our method performed slightly faster on tensors of similar size to those
factored in the simulation experiments of this paper (not shown). We suspect the performance gap may widen
depending on the size of the tensor. Indeed, to factor an arbitrary tensor of size I1 × · · · × IN the LP update for
the ith factor matrix would be an optimization problem over 2

∏
n6=i In + R parameters. In contrast, the ith factor

matrix update consists of Ii independent `1 minimizations over R parameters. Moreover, the independence of these
minimizations present speed-up opportunities through parallelization.

Our simulations demonstrated that there are non-Gaussian noise scenarios in which the quality of CPALS solutions
suffer while those of CPAL1 tend to be insensitive to the presence of non-Gaussian noise. In simulation studies not
shown we have seen that not all non-Gaussian perturbations cause noticeable degradation in the CPALS factorization.
Conversely, there are situations when CPAL1 struggles as much as CPALS in the presence of artifact noise, e.g. when
the data tensor is sparse as well. We conjecture that CPAL1 is most suited to handle artifact noise when the data
tensor is dense. Finding an alternative to the 1-norm loss for sparse data with non-Gaussian noise is a direction for
future research.
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